If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-22x+8=0
a = 2; b = -22; c = +8;
Δ = b2-4ac
Δ = -222-4·2·8
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{105}}{2*2}=\frac{22-2\sqrt{105}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{105}}{2*2}=\frac{22+2\sqrt{105}}{4} $
| 7/19x=1/2 | | V=c/2π= | | V=c/2π | | 4x+20=10x-30 | | x⁴-13x²+36=0 | | 12-2(x-4)+7=35 | | 1/2x-2/3=1-1/3x | | 2x(4-7)=6(-2x+5) | | 1.8-6x=0 | | 2x-8+x=-5x-1 | | (7x-2)+(90)=180 | | (20+14x)/12=4 | | 5x-3=2×+9 | | 6/7x=1/3 | | (7x+2)+90=180 | | (20+3x)/2=-12 | | (7x+2)+(90)=180 | | 5+2x3=21 | | -2x=-2x+10 | | X^2-68x+480=0 | | x2−23x+112=0 | | -4(x-5)+1=-1+3(×+6) | | (7x-2)+90=(15x-8) | | (7x+2)+90=(15x-8) | | (7x-2)+(15x-8)=180 | | (7x-2)+(15x-8)=90 | | (7x+2)+(15x-8)=180 | | (7x+2)+15x-8=190 | | (7x+2)+15x-8=180 | | x+2/5=5-x+3/2 | | 3/4(x-20)=-39 | | 3x+x+11=28 |